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INTRODUCTION 

In support of an Army-wide modernization program, the Army 
Armament Research and Development Command, Dover, NJ, is engaged in 
the development of safety criteria as a project entitled, "Safety 
Engineering in Support of Ammunition Plants." 

Prior to investigating the explosive fragmentation of reinforced 
concrete structures (one aspect of the safety engineering program), 
a feasibility study of sub-scale dynamic modeling was conducted to 
determine: 

1. The applicability of sub-scale modeling to random mass 
fragments of reinforced concrete subjected to excessive blast loads. 

2. The physical relationships between the model and the pro- 
totype in constitutive properties, panel geometry, and boundary con- 
ditions as well as the resulting fragment weight/shape, density, and 
distribution. 

PROBLEM DEFINITION AND SOLUTION 

In munitions manufacturing facilities, reinforced concrete 
plays an essential role as a building material for both dividing 
walls (between quantities of explosive) and exterior walls and 
roofs. 

Mechanics of Fragmentation (ref. 1) 

When a reinforced concrete element is substantially overloaded 
by a blast wave, the element fails and concrete fragments (post- 
failure) are displaced at high velocities (fig. 1). 

Failure of an element is characterized by the dispersal of con- 
crete fragments formed by the cracking and displacement of the con- 
crete between the donor and receiver layers of the reinforcement. 
As an element deflects and the concrete begins to crush, the compres- 
sion stresses normally resisted by the concrete are transferred to 
the reinforcement.  With increased deflections, these compression 
forces tend to buckle the reinforcement outward, initiating rapid 
disintegration of the element. 



The velocity of individual fragments varies and depends on: 
(1) the magnitude of the excess (or blast) impulse minus the flexural 
impulse capacity of the element (area under the resistance-time 
curve), (2) the mass of the fragment, (3) the location of the frag- 
ment prior to collapse, (4) the interaction between fragments during 
their flight, and (5) the strength and time history of the compres- 
sive stress wave transmitted through the wall as the blast wave is 
reflected.  Although the velocities of individual fragments differ, 
the average translational velocity, Vg (avg), of the debris after 
complete failure can be approximated from the excess impulse, ig, and 
the unit mass, m, of the barrier; i.e., the momentum of the wall 
after collapse is numerically equal to the excess impulse, ig = mvj? 
(avg). 

Also, 

i^ = C 
(pHdc^ds) ^ Cfd^Vf^ 

u     H 

where 

i  = applied unit blast impulse 

pH = reinforcement ratio in the horizontal direction 

d  = distance between the centroids of the compression 
and tension reinforcement. 

f, = dynamic design stress for the reinforcement 

H = span height 

VJ: = maximum velocity of the post-failure fragments 

C = impulse coefficient for ultimate deflection X 

C = post-failure fragment coefficient 

The reflected shock wave is also transmitted through the wall 
as a compressive wave, and reflects from the rear surface as a ten- 
sion wave which partially cancels the incoming compressive wave.  If 
the shock strength is great enough and its decay rate rapid enough, 
a net tensile stress will occur at some distance from the rear sur- 
face.  The concrete (which is weak in tension) will fail and spall 
off. The thickness of the spall and its velocity can be estimated 



from knowledge of the reflected wave properties and the constitutive 
properties of the concrete. 

Dynamic Modeling of Reinforced Concrete Elements 

The following exercise defines the physical similarity between 
reinforced concrete elements in the model and the prototype subjected 
to blast overloading as described in reference 2.  The constitutive, 
geometric, and mechanical parameters dictated by the scope of the 
problem are given in table 1. 

PI TERMS FROM DIMENSIONAL HOMOGENEITY 

By inspection (already dimensionless) 

■n^^ = ip 

TT^-* = K 

Technique from reference 2: Matrix Solution 

FOLOTO= W^lR^2p aSp a^^ ag^ ag^ ay^ a^^   ag^ a^^^   a^^ ai2 
csccsscs As 

E   al3^^   aii+^ai5 
c F 

Using matrix algebra (identity submatrix) 

Form a matrix: 

F 

L 

T 

WRppCTUTLLL.  EEW^V csccsscsAscF 

a     a      a 
1        2        3 

a 
k 

a 
5 

a a 
7 

a 
R 

a 
q 

a 
1 n 

a 
1 1 

a a 
1 2 

a         a 
13        14        15 

-1-1      0   +1 + 1 + 1 + 1 + 1 + 1 0 0 0 + 1 + 1 + 1         0 

+1   +1   -4 -4 -2 -2 -2 -2 + 1 +1 + 1 -2 -2 + 1         3 

0      0      2 2, 0 0 0 0 0 0 0 0 0 0        0 



fl 0 0 0 +1 +1 +1 +1 0 0 0 +1 + 1 +1 0 

0 +1 0 0 -3 -3 -3 -3 +1 + 1 + 1 -3 -3 0 + 3 

0 0 +1 +1 0 0 0 0 0 0 0 0 0 0 0 

Matrix algebra steps; 

Step 1 - Divide row 3 by row 2. 

Step 2 - Subtract new row 3 from row 1, and write new row 1. 

Step 3 - Subtract row 1 from row 2. 

Step 4 - Multiply row 3 by row 4 and add to row 2. Write new 
row 2. 

Therefore, identity submatrix in the following matrix: 

ai       ^2       ^3       ^^       ^5       ^6       ^7       ^8       ^9       ^10    ^11    ^12    ^13    a^    3^5 

F 

L 

T 

Then,   by  inspection 

^1   =      -as   -ag   -ay   -as   -ai2   -ai3   -a^i^ 

32 =  335 + 335 + 337 + 33g - ag -ajQ -ail + 3ai2 + 33i3 -33i5 

33 =     -31+ 

Substituting in the original equation 

FOLOTO=   w"^5-a6-a7-ag-ai2-ai3-ail+   ^^ 3a5+3a^+3a^+3ag-ag-a^Q-aj^ 

+3312+3313-3315 

X   P^'^'^P    ^'^C   ^5T   ^GU   37^   asL   ag      aiQ      an      ajj 
^ sccsscsAs 

E     ^13y     ail,     315 
X      c F 



Collecting terms of like exponent, we have the model law.  This can 
be expressed as: 

w 
^  ,   p   R3C R3T R^U  R^T   L   L   L. R^E R^E 

V_ \ f .  _s   c  c  s  s  _c  _s^  _A  s  c 
-'■^'<^      p    w     W  , W  ,W  ,R,R,R,  W  ,  W 

c , 
R3 

JL 
K 
y 

The law can also be stated in the form of table 2. 

SCALE FACTORS 

Various relations between scale factors can be determined from 
the dimensionless terms. 

TT 1  ^  A     =  A = 1 (set equal to 1 for ease in fabricating model) 

■^2 . ■^S . ■^4. ■^S > ■^S . TTy -> 3, " ^C. - ^T_ - ^U 
= A. 

A^R 

E     E 
s     c 

•^8. ^9. ■^10 "^ ^L  ^ '''L  " "^L  " '^R 
c     s     A 

^11 " ^W, = \, 
F    W 

^12 :^ ^v  = ^ R 



These interrelations are all satisified by a replica model^ 
with geometry identical to the prototype. Although wave transmission 
effects are not shown in scale, they will scale properly because all 
constitutive properties and densities are unchanged. 

CONCLUSIONS AND RECOMMENDATIONS 

The preceding similarity exercise has demonstrated that 

1. A replica model accurately reflects the performance of a 
prototype system. 

2. Failure modes of a replica model are representative for 
geometrically similar panels. 

3. The model also exhibits similar relationships for frag- 
ment mass and velocity, distribution, and debris density. 

For economic reasons and ease in testing, it is recommended 
that subscale replica models be used with a scale factor as small as 
possible without sacrificing the quality of the model. 

REFERENCES 
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^A replica model is a physical model of a prototype which is geo- 
metrically similar in all respects and employs the same materials 
in the same locations as the prototype (ref. 2). 



Table 1. List of parameters for explosive 
fragmentation of reinforced 
concrete elements 

No. Parameter Dimension 

1 w FL 

2 R L 

3 Pc FTVL'* 

4 Ps FTVL"* 

5 ^c 
F/L^ 

6 ! ^c 
F/L^ 

7 "s F/L2 

8 Ts F/L2 

9 Lc L 

10 Ls L 

11 ^A L 

12 % 
F/L2 

13 ^c 
F/L2 

14 Wf FL 

15 V L^ 

16 1^ -- 

17 

Description 

Energy in blast source 

Radial distance of blast 

Density concrete 

Density steel 

Compressive strength 
(concrete) 

Tensile strength (concrete) 

Ultimate strength (steel) 

Tensile strength (steel) 

Characteristic geom. o£ 
element 

Characteristic geom. of 
rebar 

Aggregate size 

Elastic moduli (steel) 

Elastic moduli (concrete) 

Energy imparted into 
fragments 

Vol of fragments 

Distribution function of 
fragments 

% energy absorbed by 
element 

I ' 



Table 2. PI terms - explosive fragmentation 

^1 = 
Ps/Pc 

772 = R3CC/W 

T^3 = R3TC/W 

774 = R^Us/W 

^5 = R3TS/W 

TT6 = R3ES/W 

777 = R3EC/W 

TTe = Lc/R 

779 = Ls/R 

^10 = LA/R 

^11 = Wp/W 

7712 = V/R3 

^13 = -J^ 

7714 = K 

^ 

J 

J 

CONSTITUTIVE SiMILARfTY 

GEOMETRIC SIMILARITY 

SIMILAR ENERGY TRANSFERS 

SIMILAR MASS TRANSFERS 

DISTRIBUTION FUNCTION 

%  ENERGY ABSORBED 



DONOR 
(Explosive Charge) 
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Figure 1. Explosive fragmentation, 
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